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MATHEMATICIANS IN OUR LIVES     

 With the support of  

                   

                                                  

                  

                                                                            9-10 years olds 

 

INTRODUCTION  

As part of the Mathematicians in Our Lives programme, the Irish Mathematical Trust (IMT) has 

developed this package to celebrate the life and legacy of Sir William Rowan Hamilton. The lesson is 

structured in four sections: After a short review of Hamilton’s life and achievements, we will focus 

on the main areas of his work, with sections on Geometrical Optics, Graph Theory, and Quaternions. 

Each section discusses the fundamental questions in the area and some of Hamilton’s contributions, 

and includes a set of suggestions for class discussions, games and hands-on exercises.  The lesson 

plan is designed so that you may extract sections to teach or to use the content to build lessons 

around the information provided. We hope that you enjoy this exploration of the brilliant mind that 

was Sir William Rowan Hamilton’s. 

Objectives:  

 To introduce William Rowan Hamilton as a person and as a Mathematician. 

 To explain the basics of the Laws of Optics, Graph Theory, Quaternions. 

 To illustrate the rich interplay between Algebra and Geometry through examples from 

Optics, Graphs, Complex numbers and Quaternions.  

 To solve games, practical tasks and logical exercises on the topics above.   

Required: 

 One copy of Hamilton Museum Circuits for each student. 

 One Quaternion Ball kit, scissors and stapler or sellotape for group of 2-3 students. 

 One copy of the worksheet per student. 

Lesson time: 1-3 lessons of 40 min each.  

https://drive.google.com/open?id=0Byaoho6Ly3rRRUNTSWVDbHhTNG8
https://drive.google.com/open?id=0Byaoho6Ly3rRQXR0YzRoeGZWRUE
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WHO IS WILLIAM ROWAN HAMILTON? 

Sir William Rowan Hamilton (1805-1865), one of Ireland’s most famous scientists, was a 

distinguished mathematician, physicist and astronomer. He made a large number of important 

contributions to Optics, Mechanics, Graph Theory and Algebra. Many notable concepts in physics 

take their name from him; like the Hamiltonian function and Hamiltonian mechanics, while in 

Algebra, his best-known discovery is of the Quaternion number system. 

HIS LIFE 

 The story of a childhood at the same time normal and exceptional. Invite your students for their 

opinions on whether there was a connection between the early training in languages and the later 

proficiency in mathematics?  

 Starting from Hamilton’s story, invite students to discuss how initial challenge and defeat can 

influence a person’s future career. 

 Ask your students if they ever visited an observatory. Give a short description of one. What 

connections can be found between a job at an observatory and research in mathematics? 

 Propose further historical investigation: Compare the lives of George Boole and William Rowan 

Hamilton. Did they live in Ireland at the same time? Did their lives/work intersect? 

William Rowan Hamilton was born in Dublin on 4th August, 1805. Judging by all his academic exploits 

at an early age, you wouldn't believe that Hamilton was a healthy boy who loved swimming, nature 

and jolly gatherings of friends. By the age of 13, nature walks brought out his enthusiasm in the form 

of poetry in at least 13 languages (Latin, Greek, Persian, Hebrew, Arabic, Sanskrit and others). His 

education was in the hands of his uncle, an accomplished linguist; Hamilton’s mother and father had 

both died by the time he was 14.  

The young Hamilton's first recorded mathematical adventure was a 

contest that pitted him against another child prodigy, the American 

"calculating boy" Zerah Colburn (unfortunately, Hamilton lost). Once 

Hamilton's curiosity about mathematics was ignited, its fire spread 

rapidly in his imagination. He entered Trinity College Dublin to study 

both classics and mathematics – achieving the highest honours in 

both - but he was more and more attracted by the later. He started 

blending algebra and geometry to study the laws that explain how 

light moves. He hadn't yet completed his studies when he presented 

his great work “Theory of Systems of Rays” to the Irish Academy (April, 1827). In the same year, 

before he had time to finish the final exams, he was appointed professor of astronomy, ahead of 

some well-established astronomers, and despite the fact that he hadn't even applied for the job!  

Hamilton worked at the Dunsink Observatory till the end of his life. This was a rich and layered life, 

with many friends among poets as well as scientists.   

                                       HIS WORK – AN OVERVIEW 

 Outline the three main areas of Hamilton’s work which will be investigated in this lesson: Optics; 

Graph Theory; Quaternions. 

 Discuss practical applications of Hamilton’s work: conical refraction; the transition from the 

Hamiltonian mechanics to quantum mechanics and its uses in modern life; the use of quaternion in 

describing 3D rotations for airplane/space-ship flights and for computer games. See more resources 

at the end of this document.  
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Hamilton started his scientific work out of curiosity about optics: the laws that explain how light 

travels through different media like air, water and glass, and how it reacts to obstacles or other 

changes.  In his work “Theory of Systems of Rays” and its supplements, he devised the idea of 

characteristic function: a tool for measuring the time it would take light to travel along various 

paths, in terms of the start and end coordinates. This allowed him to explain the laws of optics based 

on the principle that light always chooses the fastest path (the Minimum Principle).  

This brought him to spectacular and unexpected predictions about lights’ behaviour. For example, 

people before him had observed one ray splitting into two or three when passing through a crystal, 

but Hamilton discovered that in certain cases there would be an infinite number, a cone of refracted 

rays – which was confirmed by experiments and won him a Royal Medal in Physics.  

                           

Hamilton’s work in geometrical optics fit in well with the new treatment of mechanics developed by 

J. L. Lagrange (1736-1813), but Hamilton brought a simplicity and clarity which allowed him to carry 

over all of his methods effortlessly to the most general problems of mechanics.   

Almost one hundred years after Hamilton presented his work to the Royal Irish Academy, his 

methods were found to be just what was needed for the creation of quantum mechanics in 1925-

1926, which has in turn brought us the marvels of the digital world. 

In his later life Hamilton became more and more intrigued by the interplay between algebra and 

geometry. This led him to the discovery of the quaternions, a four-dimensional extension of complex 

numbers determined by the equations 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1 (which he famously carved into the 

side of Broom Bridge in Dublin). He spent the greater part of the rest of his life studying the 

quaternions and their properties, putting forward applications in the study of rotations that are used 

in aero- and astronautics to this day.  

                                                           

Even though your laser has emitted just one line beam, from the other side of certain crystals you see it as a ring of light: 
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In graph theory he introduced the notions of Hamiltonian paths and circuits while searching for a 

closed path along the edges of a dodecahedron that visits each vertex exactly once. These ideas 

generate theorems to this day. 

 

                                        OPTICS 

 A short introduction into Optics through the example of light refraction. 

 Encourage your students to get involved in a class discussion on the Minimum Principle:  

 How does it apply to Refraction in Optics?  

 Why do they think the principle holds true?  

 How did Hamilton apply it and how does it relate with the Google Maps 

directions app? 

 You may organize the students in teams of 2-3 and let them work on choosing the best paths  

between two points when the medium of propagation changes.  

For millennia, people have been attracted to the night sky and the movement of stars – the main 

questions of astronomy. This is how Galileo Galilei (1564-1642) had come to invent the telescope in 

1609, by cunningly exploiting a property of light called refraction.  

                                                             

Since then, the best minds of their time tried to find the true explanation for the refraction of light.  

For example, when passing from 

water to air, the light ray bends. This 

is why our minds get tricked into 

perceiving a fish as closer to the 

surface than it is. Indeed, on the way 

from the fish to our eye, the light ray 

had bent, but our minds still thinks 

it's straight. So in our mind we "see" 

the fish in an imaginary position 

along a straight line, instead of its 

real position lower down.  

               REFRACTION AND THE MINIMUM PRINCIPLE  

Class Discussion: So, what causes the light to bend when passing from water to air? 

Answer:  The light travels faster through air than through water.  
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 Class Discussion: Why do you think the light travels faster through air than through water?  

 Answer: If we could look at air and water through a powerful microscope, we’d see that they are made 

of little pieces we call molecules. The air is made of molecules of different gases, which keep apart from 

each other. The water molecules are more crowded. When the light hits a molecule, this shoves the light 

out of its path a little. Imagine getting shoves every other step – this is bound to slow you down.   

Class Exercise: Plan Your Trip! Normally, 

the fastest path between two points is a 

straight line - but not when you hit 

obstacles, which cause delays. 

(a) In the picture here, count the number 

of dots that touch the path AB to find how 

much the traveller is slowed down. The 

top dots represent gas molecules in the 

air. The lower dots are water molecules.  

(b)  Now try to plan a better trip from A to 

B: Choose a point C on the black 

separating line, connect it to both A and B 

by straight line segments, and count the 

total number of dots you crossed. Is it 

more or less than on the path AB?  

Report your result and explain your strategy.  The student who crossed the fewest dots has found the 

fastest path and wins.  

 

Sample Answer: The red path is an 

example of a faster trip:  

AOB hits 13 dots. 

The red path hits about 8 dots. It is 

chosen so as to make the trip through 

water shorter, without making the trip 

through air too long.  

 

 

 

 

Inspired by the ancient work of Heron of Alexandria (c. 10-70 A.D.), the French mathematician Pierre 

Fermat (1601-1665) came up with a Minimum Principle, which basically states:   

 

 

The light ray always travels along the fastest path.  
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   Class Discussion: How does a light ray plan its journey?  

 If you don’t suppose that Light is as thoughtful as a human being, 

you might think there is something funny with the idea that the 

Light knows where it wants to go and plans the whole trajectory in 

advance.  

What’s going on? How does the Minimum Principle make sense?  

 Answer: First off, distances; when Hamilton and others applied the Minimum Principle, they were 

thinking of light travelling extremely small distances, so that you might argue the planning wouldn’t 

require that much foresight.  Secondly, we might think of the Minimum Principle more as an 

example of observer effect: we think that that’s how light behaves because this behaviour is the only 

one that we can observe. Consider this: a light source usually sends rays in many directions. 

However, the light rays that start at A in a “wrong” direction will meet more and more obstacles that 

jolt and deflect them further away from the target. Thus their chances of hitting the target B (where 

we patiently await) become so small that we can hardly notice any such rays reaching the 

destination. In fact, our eye is not trained to notice such small effects.   

 On the other hand, finer measuring instruments may detect “stray” rays, with various frequencies. 

This kind of probabilistic thinking applied at extremely small scales inspired Quantum Mechanics, an 

area of Physics to which we owe much of our understanding of nature at atomic level, as well as 

semiconductor-based electronics, (computers, smartphones), optical cable telecommunication (the 

Internet) , and other features of modern life.  

SO… WHAT ABOUT HAMILTON? 

Hamilton’s great insight was a smart way to calculate how fast paths are. He designed his calculation 

as a function of the coordinates of both the starting point and the target. In many more complicated 

problems, this viewpoint brought clarity and simplifications.  

Today, Google Maps works much like Hamilton’s characteristic functions: 

 It can take as inputs your starting points and the desired destination 

 It calculates the duration of each possible path 

 And it highlights the fastest path for you: 
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Google Maps’ is a simpler set-up than in Optics, because cities have a finite numbers of possible 

paths. A map can be modelled mathematically by a graph whose points are all addresses and edges 

are the streets between them. You might not be surprised to find that Hamilton was also interested 

in graphs and their properties, and he has a special type of graphs named in his honour!  

But wait! Guess what? All the data used by Google Maps in its algorithms was gathered by the 

Global Positioning System, a network of satellites around the Earth. To determine distances, they 

use atomic clocks designed using principles of Quantum Mechanics – which profited much from 

Hamilton’s mathematical formulations.  

GRAPH THEORY 

 Introduce the area of Graph Theory using a famous puzzle. 

 Define the notions of Hamiltonian paths, cycles and graphs. 

 Play some games based on identifying Hamiltonian cycles, and work through some applications.  

THE SEVEN BRIDGES OF KÖNIGSBERG 

The oldest and most famous use of graphs to 

describe travel around cities comes from the city of 

Königsberg (now the Russian city Kaliningrad). 

During the time of the Swiss mathematician 

Leonhard Euler (1707 – 1783), this was a Prussian 

city that lay on the Pregel River. A small island was 

located in the middle of the river at the city centre, 

and the 4 separate land masses were joined by 

seven bridges as shown. 

The story goes that the people of the city invented a 

game, whereby they had to try to find a route 

through the city centre that crossed each of the seven bridges exactly once (without necessarily 

starting and finishing at the same point). Of course, going half-way across a bridge and turning back 

was not allowed, and neither was swimming, jumping the gap or running down the bank to look for 

an eighth bridge or hovercraft. Provided these rules were obeyed, it seemed that no-one could find a 

solution. Can you? Give it a go! 

….but don’t spend too long at it, because it’s actually impossible. In fact, Leonhard Euler proved 

mathematically that no solution exists, and in doing so kick-started graph theory.  Euler discarded 

most of the beautiful features of the 4 land areas in the city, and represented each area by one node 

(dot). He could then focus on the bridges and represented them as edges (curved lines connecting 

the dots: 

 

 

 

 

 

 

https://upload.wikimedia.org/wikipedia/commons/5/5d/Konigsberg_bridges.png
https://en.wikipedia.org/wiki/File:K%C3%B6nigsberg_graph.svg
https://en.wikipedia.org/wiki/File:K%C3%B6nigsberg_graph.svg
https://en.wikipedia.org/wiki/File:7_bridges.svg
https://en.wikipedia.org/wiki/File:7_bridges.svg
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He didn’t care about correct sizes and locations, all he was interested in is what connects to what. 

Can you see the connection between the two pictures above? Next, Euler noticed that, except for 

the start and end points of your trip, whenever you enter a node by an edge, you also leave it by an 

edge, i.e. edges are used in pairs, and as a result, there must be an even number of edges connected 

to each vertex that isn’t the start or end point.  But you’ll notice that all of the nodes here have an 

odd number of edges. Because of this, Euler concluded that you can’t win the game.  

As well as being a fun puzzle, this led to the mathematical field of graph theory. For the first time, a 

real-world situation had been replaced by an equivalent graph, the problem had been solved in this 

abstract setting, and the result translated back into the real world. A graph in graph theory is just a 

number of nodes connected by edges. We’re now going to see how Hamilton contributed to the 

study of graphs. 

HAMILTONIAN PATHS 

What we were looking for in the last section was an Eulerian Path, or a path 

through a graph that visits each edge exactly once. Hamilton was fascinated by 

shapes like the dodecahedron (aka football) and he started searching for a way 

along the edges that visits each vertex (node) exactly once. He didn’t care about 

using all edges.  

A path that visits each node of a graph once is now called a Hamiltonian Path, 

while a Hamiltonian Cycle is a Hamiltonian path that starts and finishes at 

the same point. The task of finding a Hamiltonian cycle on the edge-graph 

of a regular dodecahedron is called Hamilton’s game or the icosian game. 

Let’s give it a go! 

First of all, let’s change it to a 2-dimensional problem. Like in the last 

section, we don’t care about the distances between nodes, provided the 

same things are connected to each other. So, we can “flatten out” the 

dodecahedron into a 2-D graph: 

Exercise: Find a Hamiltonian cycle in this graph: 

 Sample solution:  

Hamilton invented a new mathematical method called icosian calculus 

and tried to make this into a commercial product. However this ended 

in failure because the number of solutions people could find was small 

enough and they became bored of it too quickly.  

The notion of Hamiltonian paths and circuits is the most interesting 

aspect of this story, and is an important part of graph theory to this day.  

By Christoph Sommer (Own work) [GFDL, CC-BY-SA-3.0 or CC BY-SA 2.5-2.0-1.0], via Wikimedia Commons 

 

HAMILTONIAN GRAPHS 

A graph is called Hamiltonian if it has at least one Hamiltonian Cycle in it.  

http://www.gnu.org/copyleft/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5-2.0-1.0
https://upload.wikimedia.org/wikipedia/commons/a/ad/Dodecahedron_schlegel_diagram.png
https://upload.wikimedia.org/wikipedia/commons/6/60/Hamiltonian_path.svg
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Exercise:  Museum Circuits 

Part 1:  Suppose you are a security guard in a museum, 

and are locking up for the evening. The diagram given 

here is a plan of the museum, where every square 

represents a room and darkened squares are rooms 

that are closed for renovations. Before closing the 

museum, you have to check each (open) room once 

and only once and finish back where you started (you 

can start wherever you like). You must move from 

room to room and cannot leave the museum. Can you 

trace out your path in each diagram?  

 

 

This part is the same as Part One except that you are racing each other this time. The class will be 

divided into pairs and the first of five museum plans will be placed, upside down, in front of each of 

you. When your teacher says go,  turn over the first plan and start looking for a circuit as quickly as 

possible. The rules for drawing a circuit are the same as in Part One (no leaving the museum, etc.). In 

addition, when either person in any pair says they’re finished, both students in the pair must stop 

immediately, then both check that the person who claims they’re finished actually has found a valid 

circuit. If they have, they win that round. This is continued for the other four museum plans, and the 

person in the pair with the most wins is the winner.  

All templates are here. Solutions can be found in the Primary Maths Circles Booklet here.  

Solution for Template 1.  

 

 

 

 

 

 

 

 

 

https://drive.google.com/open?id=0Byaoho6Ly3rRRUNTSWVDbHhTNG8
http://euclid.ucc.ie/MATHENR/MathCircles_files/Booklet_all.pdf
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Application: Knight’s Tour and the T.S. Problem 

As you can imagine, there are so many different kinds of 

Hamiltonian path problems. A well-known example is the Knight’s 

Tour in a chessboard: 

Making a knight’s tour involves moving a knight around a 

chessboard, landing at each square exactly once (no more nor 

less often). Knights can only move in “L-shapes”, i.e. one square 

horizontally and two vertically or two squares horizontally and 

one vertically. 

 

 

 

An “open” tour is one that doesn’t start where it 

began; a “closed” tour does. It mightn’t seem like 

this has anything to do with Hamiltonian paths, 

but think about it: what if we joined each square 

(using lines) to all squares the knight could move 

to in one turn? We’d get a graph, with the squares 

acting as the nodes and the lines as the edges. In 

fact, it would look like this: 

Then, the Knight’s Tour game becomes a matter of 

finding a Hamiltonian path or cycle in this graph. 

As you can imagine, there are loads of different 

tours that can be constructed. It is still a very 

difficult problem, however. It can’t really be 

solved by brute force (listing all possible paths in 

the graph and picking out the ones that are Hamiltonian) because there are around 4 ×  1051  

Hamiltonian paths that a knight can take (that’s a fairly big number. In fact, if it took you a minute to 

check each path, it would take about 7.5 billion trillion trillion trillion years in total). There are, 

however, some algorithms that can produce results. A useful one is Warnsdorff’s rule (a “heuristic” 

algorithm), which tells you that, when choosing your next move, you should always take the option 

with the lowest number of possible moves. If you ever find that two or more options share this 

lowest number, you should just pick one of them randomly (there are methods for determining 

which one to choose, but they’re quite complicated).  

Here’s a cool Knight’s Tour game which can be played online. It’s easier to use than the traditional 

chessboard because it keeps track of the moves you’ve already made and only permits legal knight 

moves.    

 

https://www.brainbashers.com/knight.asp
https://upload.wikimedia.org/wikipedia/commons/6/64/Knight's_graph_showing_number_of_possible_moves.svg
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An extension of the Hamiltonian circuit problem is the 

Travelling Salesman Problem.  

Puzzle: Imagine you are a salesperson who travels 

around a country selling your product in big cities. Some 

of the cities are linked by highways, while others aren’t, 

and every highway-link between two cities has an 

associated distance. You want to visit every city exactly 

once and finish where you started, while at the same 

time ensuring you travel the smallest distance possible. 

Which path do you take? 

 Basically, the cities and highways can just be viewed as 

a graph in which the distance between nodes actually 

counts. The problem is simply to find the Hamiltonian circuit with the shortest length: 

Solution:  

When we calculate the length of the circuit, it doesn’t matter where we start from. So we’ll always 

start at A.  

Hamilton Circuit Length  

ABCEDA 2+4+3+3+8=20 

ABCDEA 2+4+7+3+6=22 

ABDCEA 2+3+7+3+6=21 

ADBCEA 3+3+4+3+6=19 

And the winner is ADBCEA.  

This actually has countless applications in the real world. There are the obvious ones like deciding 

how a postman should most efficiently deliver mail, but other uses include determining how best to 

time online advertisements, place vanes on an aircraft turbine and wire a computer. It is in fact one 

of the most intensely-studied problems in optimisation. 

 

ALGEBRA AND GEOMETRY: FROM REAL NUMBERS TO COMPLEX NUMBERS AND 

QUATERNIONS: 

 Look at the Algebra with real numbers as a way to describe movements along a line. 

 Introduce Complex Numbers as points in the plane, and operations with complex numbers as 

movements on the plane. 

 Introduce Quaternion Algebra with the hands-on Quaternion Ball tool.  

 Perform rotations in 3D using Quaternions 

Mathematics is a story spanning thousands of years, with hundreds of characters, both human and 

mathematical. It is a story too long for anyone to hear the whole of, but many people spend their 

lives listening. Today we will give a little bit of this story and our main characters will be an Irish 

mathematician, William Rowan Hamilton, and a new number system called the quaternions. But 

what are the quaternions and more importantly, why should we care about them? Hamilton came 

about the idea of quaternions as a way to represent rotations in a three-dimensional space.  

 

C 

E 

B 

A 

D 

8 
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NUMBERS ON THE REAL LINE 

In order to understand these fully, we need to remember how numbers and operations can be 

thought of in practical (and geometric) terms: 

 

   

 

 

For example,  +3 means we skip three unit steps to the right, starting from wherever we are. 

 

 

 

Here we use the symbol 𝑥 to describe a number that we might not know from the beginning, and 

whose value we might find out later. If our walk along the number line led us to 5, we write this as 

𝑥 + 3 = 5.  To find 𝑥,  we move back 3 spaces:  𝑥 = 5 − 3 = 2. 

 

 

Thus −3 means moving 3 steps to the left. This is the type of thinking that the Persian 

mathematician al-Khwārizmī (780 – 850) described by the Arabic word al-jabr (reunion of 

broken parts), which is the origin of the well-known word Algebra. 

Algebra uses symbols to describe numbers. This allows us to make general statements like this one 

(where 𝑎 stands for any positive number): 

 

 

 

 

From the picture we see that −𝑎  is the result of the reflection of 𝑎  across 0. Since  

 −𝑎 = (−1) × 𝑎 we can thus give a geometric meaning to the multiplication by  −1: 

 

 

 

COMPLEX NUMBERS  

As often happens with stories, we must now skip ahead in time. We come to the second major 
characters in our story, the complex numbers. Armed with all the numbers, operations and symbols 

                                                +3 

0                         𝑥                                        5

+𝑎 is a move of length 𝑎 to the right , while −𝑎 is a move of length 𝑎 to the left.  

 

                                               +3 

0           1            2            3            4            5 

        Geometrically, multiplication by  (−1)  is the reflection across 0. 

 

−𝑎                             0                             𝑎             

Real numbers = Points on a line 

Operations with numbers = movements along the line 
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they could put on a line, mathematicians could now solve so many different equations that they 
even starting looking into impossible ones, like this one:    

𝑥2 +  1 =  0 

which is the same as 𝑥2 = −1 or equivalently 𝑥 =  √−1 or −√−1.  But taking the square root of a 

negative number seemed totally impossible for a long time. The first person who dared mention it was 

the sixteenth century Italian mathematician Cardano, who called such a number 𝑥 meaningless, 

fictitious, and imaginary. From here on, this number was denoted by 𝑖 from “imaginary”. 

  “For well over two centuries after imaginary numbers broke into the domain of mathematics they 
remained enveloped by a veil of mystery and incredibility until finally they were given a simple 
geometrical interpretation by two amateur mathematicians: a Norwegian surveyor by the name of 
Wessel and a Parisian bookkeeper, Robert Argand”. By developing their interpretation a complex 
number,  
 
 
 
 
 
 
Products:  
 
When we multiply a real number, say 4, representing a point on 
the horizontal axis, by the imaginary unit 𝑖 we obtain the purely 
imaginary number 4𝑖, which must be plotted on the vertical axis.  
 
 
 
 
 

 
 
We can see that rotating by 90° twice corresponds 
to a rotation by 180°, which is the same as the 
reflection through the origin O: 

𝑖 ⋅ 𝑖 ⋅ 4 = −4 

or equivalently 𝑖2 = −1.  The equation that had 

baffled mathematicians for centuries now has a very 

nice geometric interpretation.  

(Recall that 𝑖 ⋅  is the rotation by 90°  while (−1) ⋅ is 

the reflection through 0.) 

 

 

Operations with complex numbers = movements on the plane. 

   Multiplication by  𝑖  is the same as a counter-clockwise rotation by a right angle around O. 
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Plaque on Broom bridge. Wikimedia Commons. 

By the same means 

 

 

THE QUATERNIONS  

 Introduce the Quaternions as a four-dimensional system of imaginary numbers. 

 Describe addition and multiplication of Quaternions, with the use of a geometric visualisation. 

 Consider some applications of the Quaternions. 

Just like complex numbers numbers 𝑎 + 𝑏𝑖 represent points in the plane and are made of a pair of 

real numbers (𝑎, 𝑏), we can represent a point in the 3-dimensional space by a triplet (𝑥, 𝑦, 𝑧). 

Hamilton was fascinated by the discovery that multiplication represents rotation in the complex 

plane, and he wanted to do the same in 3D. The problem of finding an algebra of triples (α, β, γ) to 

describe the geometry of vectors in three dimensional (3D) space haunted him for at least fifteen 

years. 

“Every morning in the early part of the above-cited month [October 1843], on my coming down to 

breakfast, your (then) little brother William Edwin, and yourself, used to ask me, “Well, Papa, can 

you multiply triplets”? Whereto I was always obliged to reply, with a sad shake of the head: “No, I 

can only add and subtract them.” W R Hamilton in a letter dated August 5, 1865 to his son A H 

Hamilton [1]. 

In 1843, Hamilton found an ingenious way around his problem. 

The solution famously came to him as he was walking along the 

Royal Canal in Dublin with his wife on 16th October (now called 

Hamilton day)- he suddenly realised that the answer lay in 

numbers with four components instead of three. In his 

excitement, he promptly used his penknife to carve the solution 

equations into the side of nearby Broom bridge: 

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1 

This was the birth of the quaternions, which we represent by ℍ in honour of Hamilton. Let’s look 

more closely at what we’ve just written. 

First, Hamilton decided that he could have not just 1, but 3 “imaginary” axes, each with its own unit: 

𝑖, 𝑗 and 𝑘 are what we call the quaternion units. They form the building blocks of the quaternions. 

Notice that they all satisfy 𝑖2 = 𝑗2 = 𝑘2 = −1, so in fact we now have 4 axes: three for 𝑖, 𝑗 and 𝑘, 

and a fourth one for the real numbers. 

    Multiplication by −𝑖  is the same as a clockwise rotation by a right angle around 0. 
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To help us better grasp the 

consequences of the rules 

above, we need to play with the 

symbols 𝑖, 𝑗 and 𝑘 and in 

particular, to understand their 

products. Luckily, we have a 

handy toy available to help us 

with this task. It is based on the 

following ball in the 3D 

quaternion space. As you can 

see, the axes are marked by the 

units 𝑖, 𝑗, 𝑘 on one side, and 

−𝑖, −𝑗, −𝑘 on the other side. On 

each of the three coordinate 

planes marked by circles, 

multiplication  ⋅ 𝑖 , ⋅ 𝑗 , ⋅

𝑘 represents a rotation. Indeed, 

each circle lies on a plane very 

similar to the complex plane we’re met earlier.  

 

 If you haven’t already done so, please print out and 

assemble the Quaternion Ball learning tool by clicking 

here. We will use it to play with quaternion right 

multiplication. As you can see, the Ball is made of three 

discs that intersect at right angles, with red circles on each 

disc. We find that tracing a finger along these circles while 

carrying out this exercise is helpful. Tracing out a quarter 

circle in the same direction as the arrow on it corresponds 

to right the quaternion unit (𝑖, 𝑗 or 𝑘) printed next to the circle. Tracing opposite to the arrow’s 

direction corresponds to the negative of the unit. Tracing out a number of quarter arcs in sequence 

corresponds to each of the units traced out written down next to each other in the same order: to 

the right, for example, I trace out 𝑖 and then −𝑗, which matches the multiplication 𝑖(−𝑗) = −𝑖𝑗. Any 

other path that takes you from the same starting point to the same finish gives an equal answer: 

here, I could also have taken −𝑘 to get to the same point, so I know now that −𝑖𝑗 = −𝑘, or 𝑖𝑗 = 𝑘. 

Let everyone in the class please copy the table just below onto a sheet of paper, and using the 

Quaternion Ball as we’ve described, fill out all the missing entries. Note: Multiplication by 1 does not 

figure on the Quaternion Ball because it represents staying in place: no change. 

 

 

https://drive.google.com/open?id=0Byaoho6Ly3rRQXR0YzRoeGZWRUE
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 Exercise: 

Fill in the table with the correct Hamilton products. For 

each box, its row represents the first number in the 

product, while its column is the second number. 

For example, I’ve place 𝑘 in row 𝑖 and column 𝑗 because 

𝑖𝑗 = 𝑘. 

 

 

Solution:  

Once you’ve filled in the box, you will notice something kinda weird about it. Everybody knows that 

reversing the order of addition doesn’t matter, don’t 

they?  

                           3 + 4 = 7 = 4 + 3,    right?  

Similarly for multiplication: 2 ×  5 = 10 = 5 ×  2. 

However, we’ve just said that 𝑗𝑘 = 𝑖 and 𝑘𝑗 = −𝑖, which 

aren’t equal. So, order does matter when it comes to the 

quaternions: that’s just how they are. That’s something 

to watch out for when dealing with them.  

Note, however, that when you multiply just an imaginary 

and a real, order doesn’t matter. For example, (8)(𝒋) = (𝒋)(8).   

USING THE QUATERNIONS –  ROTATIONS IN 3D 

Aside from being a fascinating area of study in pure maths, the quaternions have at least one major 

application in the real world- mathematically representing rotations in three dimensions. There are 

other ways (like using rotation matrices) to do this, but the algebra is much simpler when using 

quaternions and certain problems that can arise with matrices are avoided. As a result, rotations are 

described by quaternions in multiple areas, including video game and movie animation, aircraft and 

spacecraft attitude control and robotics. 

 

Quaternions in Spaaace! 

As we explained before, quaternions are used for controlling spacecraft attitude, so we’re now going 

to look at an example of how this works. By the way, attitude is just a terms used in astronautics and 

other areas that means orientation in 3-D. Now, let’s think about a space shuttle in orbit above 

earth: 

 𝟏 𝒊 𝒋 𝒌 

𝟏     

𝒊   𝑘  

𝒋     

𝒌     

× 
 

𝟏 𝒊 𝒋 𝒌 

𝟏     1    𝑖   𝑗 𝑘 

𝒊 𝑖 −1 𝑘 −𝑗 

𝒋 𝑗 −𝑘 −1 𝑖 

𝒌 𝑘 𝑗 −𝑖 −1 

× 
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Example: Imagine the astronauts are having a tanning competition on board and want to turn the 

shuttle by 90° to its left so that it faces the sun, like this: 

 

How does the shuttle carry out this command? To be mathematical, we say that we want to rotate 

the shuttle by 90° around a vertical axis: 

 

 

 

 

 

90° 

Vertical Axis 
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Solution: By comparing with the quaternion ball, we get that this is −𝑖,  the clock-wise rotation by 

90∘ in the horizontal plane.  

 

 

 

 

 

 

 

https://www.quora.com/What-are-some-real-life-applications-of-complex-numbers-in-engineering-and-practical-life 

 

Exercise: Geometric Exploration:    Here's a nice transformation in 3D:  

a) Calculate the products 𝑖𝑗𝑖, 𝑖𝑘𝑖 and 𝑖𝑖𝑖. Now take a number and surround it by 𝑖 and 𝑖, like this:  

𝑖(𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘)𝑖. Plot your results in the 3D space. What do you notice? Can you describe this 

operation as a geometric transformation (movement) of the point  𝑝 =  𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘? 

b) Try the same problem replacing 𝑖by 𝑗: Calculate 𝑗𝑖𝑗, 𝑗𝑗𝑗, 𝑗𝑘𝑗. What do you notice? 

 

Solution:  𝑖𝑖𝑖 = −𝑖, 𝑖𝑗𝑖 = 𝑘𝑖 = 𝑗, 𝑖𝑘𝑖 = 𝑖𝑗 = 𝑘, 

which is the reflection across the plane of axes 𝑗 and 𝑘. This is the plane perpendicular to 𝑖.  

Similarly, surrounding a point 𝑝  by 𝑗-s is the same as reflecting it across the plane perpendicular to 

the 𝑗  axis. 

 

Hamilton was delighted with his discovery of Quaternions, and anticipated many future uses. 

Indeed, Quaternions have found uses varying from the positioning of planes and of space shuttles to 

computer graphics. Hamilton’s great contribution to Mathematics does not consist so much in the 

Quaternions themselves, as much in setting an example of reshaping laws and crossing boundaries 

of thought, from solving 3D problems by introducing 4 dimensions to the new non-commutative 

Algebra he designed. Today, non-commutative algebraic and geometric methods continue to play a 

large law in Mathematics and Theoretical Physics. 

 

This lesson plan was prepared by Thomas Sheerin, Anca Mustata and Jacob Bennett-Woolf for the 

Irish Mathematical Trust programme Mathematicians in Our Lives. We have used a large number or 

resources. We most warmly recommend in particular: 

https://www.quora.com/What-are-some-real-life-applications-of-complex-numbers-in-engineering-and-practical-life
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 “One Two Three . . . Infinity: Facts and Speculations of Science” - book by: George Gamow 

 Wolfram MathWorld http://mathworld.wolfram.com/  

 “Men of Mathematics. The Lives and Achievements of the Great Mathematicians from Zeno 

to Poincare” – book by E.T. Bell 

 https://www.forbes.com/sites/chadorzel/2015/08/13/what-has-quantum-mechanics-ever-

done-for-us/#1c65408e4046 

 https://www.slideshare.net/edzontatualia/refraction-of-light-45755877 

 

 

http://doverpublications.ecomm-search.com/search?keywords=George%20Gamow
http://mathworld.wolfram.com/
https://www.forbes.com/sites/chadorzel/2015/08/13/what-has-quantum-mechanics-ever-done-for-us/#1c65408e4046
https://www.forbes.com/sites/chadorzel/2015/08/13/what-has-quantum-mechanics-ever-done-for-us/#1c65408e4046
https://www.slideshare.net/edzontatualia/refraction-of-light-45755877

